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Abstract. We study the relaxation of ferroelastic domain walls in the vicinity of a free surface, by means of
a nonlinear continuum elastic model treated with finite elements on an adaptive grid. Domain walls bend
towards the free surface, as a consequence of the interplay of the energy per unit length of the domain
wall and the long-range elastic strains which are generated by deviations from the prescribed compatible
orientation. We also analyze the order parameter on the free surface. For walls orthogonal to the free surface
we find, in accordance with previous studies, a double-peak structure. For different angles the picture is
more complex, and in some cases only one small peak survives.

PACS. 68.35.Gy Mechanical properties; surface strains – 61.72.Mm Grain and twin boundaries –
62.20.Dc Elasticity, elastic constants

1 Introduction

Ferroelastic materials are characterized by a variety of
fine-scale structures, which form spontaneously due to
the presence of multiple energy-minimizing strains. Typ-
ically two or more variants are observed, each of which
is realized in many small domains. The orientation of
the domain wall follows, with small fluctuations, a pre-
scribed direction, leading to the characteristic lamellar
patterns. Whereas classical analysis has focussed on the
average material properties, and on the macroscopic do-
main patterns [1–3], recently interest has been growing
on the inner structure of the domain walls. Indeed, do-
main walls offer a rare opportunity to selectively dope
two-dimensional sections in the bulk of crystalline mate-
rials. The enhanced chemical reactivity of the elastically
strained region around the domain wall has been demon-
strated experimentally, and has been used to form two-
dimensional superconducting regions in an insulating ma-
trix [4–6]. The process of selective doping is in large part
controlled by the elastic strains present in the material [7],
and by their interaction with surface relaxation, which
is still poorly understood. Experimental measurements of
diffuse X-ray scattering in diffraction experiments permit-
ted to estimate the wall width [8,9]. The result is signifi-
cantly larger than the atomic spacing, and therefore justi-
fies a treatment based on continuum elasticity. The precise
experimental study of the inner structure of domain walls
is however difficult.

The relaxation around a free surface is, in some re-
spects, analogous. Indeed, experiments on ferroelectric
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powders and thin films have shown a reduction of the crit-
ical temperature with size [10,11]. This indicates that the
order parameter is reduced close to a surface, and suggests
local deformations in the surface layer comparable to those
found in the interior of the domain wall. Theoretical mod-
els for the surface relaxation suggest the possibility of os-
cillations on the unit-cell scale close to the surface [12,13]
in some parameter ranges. The effect of free boundaries
has been considered previously in a one-dimensional set-
ting [14], but previous studies in two dimensions deal with
the case of Dirichlet [15,16] or periodic [17,18] boundary
conditions.

The interaction of the wall structure with surface re-
laxation necessarily generates two-dimensional patterns,
which are relevant both for real-space probing of the ma-
terial properties, e.g. via atomic force microscopy [19], and
for interacting with the material, e.g. via doping [4,6]. The
surface structure of domain walls has been first studied
theoretically by Novak and Salje [20,21] who performed
extensive numerical simulations of a two-dimensional
atomistic model, chosen to represent typical perovskite
elastic properties. They predicted that the resulting elastic
strains generate a complex pattern, which includes a thin-
ning of both the domain wall and the surface relaxation
around their intersection, and a double-peak structure in
the surface values of the square of the order parameter.
The same results have been later confirmed, and extended
to general material parameters, by Conti and Salje [22] by
means of a continuum elastic model. They worked with
linear elasticity, with two different energy minima in the
two phases, and their model is therefore applicable only
to situations where the shape of the domain wall is known
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in advance by symmetry, namely, to the case that the do-
main wall is orthogonal to the surface. The relaxation of
the one-dimensional bulk domain structure arising from a
coupling between volumetric strains and the order param-
eter, in the absence of surface energy terms, was analyzed
by Lee et al. [23].

In this paper we present a continuum, nonlinear elastic
model where the energy density has multiple minima, cor-
responding to the different variants, in the spirit of Landau
theory. The phase distribution is not prescribed a priori,
but is determined by energy minimization. If one pre-
scribes the same fixed phase distribution, and linearizes,
our model reduces to the one used in [22], and does not in-
clude any additional free parameter. We obtain numerical
solutions using finite elements with an adaptive grid. We
study surfaces orthogonal and at 45 degrees to the domain
wall, the latter being representative of the non-orthogonal
cases. We find that the domain walls bend significantly in
the vicinity of the free boundary, and eventually intersect
the free boundary at an angle which is essentially ninety
degrees.

2 The model

We consider a cubic material which undergoes a C44 shear
instability. We reduce to two spatial dimensions assuming
that the configuration is invariant under translations in
the third one, and focus on the case of two variants sepa-
rated by a single domain wall. We remark that the lattice
obtained by rotation by 45 degrees of a square lattice also
has square symmetry. Therefore assuming an instability in
the ux,x − uy,y shear component would lead to an equiva-
lent (but rotated) problem.

The energy is written in terms of the continuum de-
formation field u as the sum of three contributions, which
are the bulk elastic energy density, a singular perturba-
tion which depends on the second derivatives of the dis-
placement field u and penalizes jumps in the strain, and
a surface energy which is localized on the free boundary,

E[u] =
∫

Ω

W (∇u) +
1
2
ε2C44 |∆u|2 +

∫
∂Ω

Ws(∇u). (1)

Here Ω is the region occupied by the body (in the follow-
ing, a rectangle or a parallelogram),

W (∇u) =
1
2
C11

(
u2

x,x + u2
y,y

)

+ C12ux,xuy,y +
1
2
C44

(
e2 − β2

)2

4β2
(2)

is the elastic energy density, and e = ux,y +uy,x is the fer-
roelastic order parameter. We remark that linearization
of the the last term in W around one of its two minima
e = ±β gives 1

2C44(ux,y+uy,x∓β)2, which is the form used
in linear elasticity. Therefore the constant we name C44

agrees with the usual definition of C44 in linear elasticity
around both minima of our nonlinear energy. The param-
eter β represents the magnitude of the order parameter at

the minima, and can be eliminated by scaling u and the
other parameters. The first energy term is minimized by
deformations for which e oscillates between the values ±β,
with interfaces parallel to either the x or the y axis. The
two orientations are equivalent, in the following we work
with an interface parallel to the y axis. In perovskites,
which are cubic crystals, we expect C11 to be significantly
larger than C12. Further, close to the transition, which is
typically either second-order or weakly first-order, C44 is
also smaller than C11. Note that we use a coordinate sys-
tem which is rotated by 45 degrees with respect to the one
of references [15–18].

The second term in the energy (1), which depends on
the squared Laplacian of the displacement u, sets the nat-
ural length scale ε for fine structures in the problem, and
forces interfaces between the values e = ±β to be contin-
uous. We defined the constant in such a way that ε rep-
resents the thickness of the one-dimensional domain-wall
profile (see Eq. (9) below).

The surface energy term takes the form

Ws(∇u) =
1
2
γεC44(ux,y + uy,x)2. (3)

This is the same expression used in [22], and is heuris-
tically motivated by the experimentally known fact that
the order parameter is typically reduced in the presence of
free boundaries. The precise amount of reduction can be
determined analytically in terms of γ, see equation (12)
below. A similar form was used in [11] for the study of the
size-dependence of the phase transition in small particles
and thin films.

3 Numerical technique

The minima of the energy (1) are determined by means
of a finite-element scheme [24–26]. The presence of the
regularizing singular perturbation ε2|∇u|2 guarantees ex-
istence a minimum. However, the energetic landscape is
complex, and many local minima are present, due to the
nonconvexity of the leading term W (∇u). Indeed, a direct
solution of the nonlinear algebraic system corresponding
to the Euler-Lagrange equations of (1) has proven to be
rather unstable, and requires a large number of iterations.
We found it more convenient to regularize the problem
by considering the corresponding gradient flow. In other
words we introduce an artificial time parameter t, make
the displacement dependent on it, u = u(t, r), and study
the behavior of solutions of the parabolic problem

∂

∂t
u(t, r) = −∇E[u] (4)

for large t. We stress that this parabolic problem is used as
a means to obtain static solutions of the Euler-Lagrange
equations, and should not be understood as modeling the
dynamical behavior of the system.
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The gradient on the right-hand side is intended in
the L2 sense, i.e., ∇E[u] is the unique function that sat-
isfies

E[u + ϕ] − E[u] =
∫

ϕ∇E[u] + O(ϕ2) (5)

for all smooth ϕ (note that ∇E has both a bulk and a
surface contribution, see Eq. (7) below). Here by O(ϕ2)
we mean terms of order

∫
ϕ2. We consider a time in-

terval [0, T ] that is subdivided into N timesteps 0 =
t0, . . . , tN = T of length τn = tn − tn−1 (the time step
is then also chosen adaptively, based on the speed of con-
vergence of the Newton scheme). Using an implicit Euler
discretization to resolve the time derivative we get

un + τn∇E[un] = un−1 (6)

where un(r) is meant to approximate u(tn, r).
Space is in turn discretized by means of finite elements.

The presence of ∆u in the energy would a priori require
the use of higher order elements, where also the derivatives
are continuous: indeed,

∫
∇E[un]ϕ =

∫
Ω

DW (∇un)∇ϕ + ε2C44∆un∆ϕ

+
∫

∂Ω

DWs(∇u)∇ϕ. (7)

In this case, however, a simpler solution is possible. We
introduce the additional variable wn and the additional
equation wn = ∆un, which by means of partial integration
can be transformed in the relation∫

∂Ω

ϕ∇un·ν−
∫

Ω

∇un·∇ϕ =
∫

Ω

wnϕ for all ϕ. (8)

(here ν is the outer normal to the boundary ∂Ω). Notice
that (8) involves first derivatives only. An analogous par-
tial integration applied to the ∆un∆ϕ term in (7) permits,
after replacing ∆un by wn, to express it in terms of the
first derivatives ∇wn and ∇ϕ only. Therefore both equa-
tions can be discretized using piecewise affine, continuous
finite elements on a triangular grid.

We use natural (free) boundary conditions; the pres-
ence of the domain wall is induced by the initial condition.
By free boundary conditions we mean that no external
force is exerted on the boundary, which corresponds to
DW (∇u) · ν = 0 on ∂Ω, and models an isolated piece of
material. This is the same boundary condition that was
used in the one-dimensional simulations in [14]. In the case
of walls at 45 degrees to the surface with γ > 0 we include
a more refined treatment of the lateral boundary to reduce
finite-size effects, as described below (see (26)).

Typical solutions are smooth – almost affine – in the
regions far from the interface and the free surface, and
can, in those regions, be well approximated with large ele-
ments. Around the interface and the free surface however
the grid size must be significantly smaller than the inher-
ent length scale ε in order to capture the behavior of u
correctly. Since the position of the interface is not known

Fig. 1. A typical computational grid. For clarity, only up to
10 levels of refinement are shown. In the actual computations,
refinement up to level 14 has been used.

a priori, we employ an adaptively refined grid based on
a triangular bisection mesh, following [27]. Starting with
a uniform triangulation and setting a maximal refinement
depth we evolve the grid after every timestep according to
the following criteria. An element (i.e. a triangle) is refined
(i.e. subdivided into two equal triangles) if it is at the free
boundary, or if the order parameter on this element is far
from the minima ±β of the double well potential. Coars-
ening involves couples of elements, and is implemented as
follows. First, elements which have not just been refined
are marked for coarsening if the order parameter is close
to ±β. Then, if in a pair of neighbouring elements both are
marked for coarsening, they are replaced by their union.
This heuristic scheme refines the grid close to the interfa-
cial and boundary regions, where second derivatives of the
solution and thus the approximation error of the piecewise
affine finite elements are high (see Fig. 1).

The finite element discretization yields for every
timestep a nonlinear algebraic system. To solve this we
apply a Newton scheme and calculate solutions of the lin-
ear systems in each iteration by the conjugate gradient
method. We choose the timestep adaptively so that only
few iterations of the Newton scheme (ca. 4-6) are neces-
sary. The main sources of numerical error are the size of
the grid, which can be systematically reduced, and the
convergence of the parabolic process to a stable state,
whose effect can be estimated by monitoring the evolu-
tion of the solution with time. We checked that our re-
sults are not affected significantly by any of the two. In
closing, we observe that since we consider only continuous
displacement fields u, the compatibility conditions are au-
tomatically satisfied.

4 Free surfaces orthogonal to the domain wall

We first consider the case that the free surface is orthogo-
nal to the domain wall. We work in a 50ε× 10ε rectangle,
containing a single domain wall at the center, parallel to
the y axis (see Fig. 2). By symmetry, the position of the
domain wall cannot change.

We start with γ = 0, i.e., without the surface en-
ergy Ws. The relaxation in the presence of a free surface is
shown in Figure 2. Away from the surface, the numerical
solution is close to the one-dimensional profile

ux = 0, uy = 2βε ln cosh
x

2ε
, (9)

which corresponds to the classical expression
e(x) = β tanhx/2ε for the order parameter. Close to
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0.000 0.000 
Fig. 2. Absolute value of the order parameter e in the vicinity
of a domain wall with C11 = 3, C12 = 1, C44 = 1, γ = 0. The
width of the domain wall is reduced close to the free boundary.

0.120

-0.120 
0.000 

Fig. 3. First component, ux,y, of the order parameter for the
same situation as Figure 2. For the one-dimensional solution
of equation (9) this would be zero. The free boundary induces
a relaxation of the domain wall, which leads to the structure
seen around the intersection of the domain wall with the free
boundaries.

the surface, however, the domain wall shrinks. In par-
ticular, the order parameter e = ux,y + uy,x is not any
more equal to the uy,x term alone, but a significant
contribution, of order 10% of its maximum value β,
is given by the ux,y component, see Figure 3. The
numerically-computed order parameter e approaches the
limit behavior β tanhx/2ε in the center of our sample,
but is significantly different on the surface, as is shown
in Figure 4. This relaxation originates from the fact that
the energy density is not quadratic in the strains, and
analogous relaxations are therefore expected in a generic
model which includes multiple minima (but not in linear
models). This can be understood e.g. by considering that
the boundary condition appropriate for a free surface
with normal ν is zero tension, i.e. DW (∇u) · ν = 0, and
this is not fulfilled by the one-dimensional domain wall
profile of equation (9). A similar effect was discussed
by Lee et al. [23] for a model with a cubic coupling
between volumetric strains and the order parameter,
using a combination of molecular dynamics and analytical
Green’s function techniques.

If we include the surface term Ws in the energy, i.e.
set γ > 0, the order parameter is reduced close to the free
surface. Away from the domain wall, the surface relaxation
can be determined analytically by minimizing the energy
over functions of the form

u(x, y) =
(

βv(y)
βx

)
. (10)

A straightforward computation gives

v(y) = −2y +2 ln(ey −α), α =
1 −

√
1 + γ2

γ
. (11)

The resulting value of the order parameter on the free
surface is then

e0(γ) = β
1 + γ −

√
1 + γ2

−1 + γ +
√

1 + γ2
. (12)

For example, for γ = 1 we get e0 =
√

2 − 1 � 0.41.

Fig. 4. Order parameter as a function of x/ε at various fixed
values of y, across the domain wall. The steepest curve is on
the surface, the second at 1/4 of the distance to the center,
the third at 1/2 of the distance to the center, the last one is
the central cross-section, which corresponds to a distance 5ε
from the free boundary. The squares give the ideal profile of
equation (9).

Fig. 5. Squared order parameter on the free surface in units of
the asymptotic value, e2(x)/e2

0, for γ = 10, 4, 2, 1 and 0 (from
higher to lower curve). The asymptotic value e0(γ) is given in
equation (12).

In the presence of both a domain wall and a free sur-
face, the minimization can only be performed numerically.
Figure 5 shows the resulting squared order parameter on
the free surface. The double-peak structure was first ob-
served with molecular dynamics in [20,21] and then with
a linear elastic model in [22]. This effect is due to the
interplay of the reduction of the order parameter on the



S. Conti and U. Weikard: Interaction between free boundaries and domain walls in ferroelastics 417

surface, induced by the surface energy Ws, with the struc-
ture of the domain wall inside the sample, and is specific
to the structure of elasticity. In particular, no such effect
would be present in a scalar model, or in models based
only on the electric polarization, such as the one consid-
ered in [11].

5 Free surfaces non-orthogonal to the domain
wall

The high symmetry present in the case of free surfaces
orthogonal to the domain walls in the bulk is very special.
We now extend the analysis to the generic case, focusing
for simplicity on an angle of 45 degrees, which – due to the
crystallographic orientation of the domain walls and the
preferred surface orientation – is quite common in cubic
materials, such as perovskites. No qualitative differences
in our continuum model are expected for different values
of the angle, except possibly for very small values. We
report below some results for 30 and 60 degrees, showing
essentially the same features.

Domain walls are not only deformed in their interior
structure, but can also change their orientation in the
vicinity of a free surface which is not orthogonal. Therefore
the regions occupied by the two variants are not known a
priori, but must be determined via energy minimization.
The present approach, which allows the system to choose
its own phase distribution, permits (at variance with the
one of [22]) to study the deformation of the domain wall.

5.1 The case without surface relaxation

We start without the surface energy term, i.e., with γ = 0,
and consider a parallelogram of side 50ε × 10ε. Figure 6
shows the resulting distribution of the order parameter for
different values of the elastic constants. The main feature
which is evident from the data is that the domain wall
bends towards the surface. The effect increases with C44,
and is small if C44 is much smaller than both C11 and C12.
The bending of the domain wall towards the surface is
in marked contrast with what was found by Jacobs for
the case of Dirichlet boundary conditions [15,16], namely,
that the wall tends to become parallel to a rigid surface.
This difference emphasizes the relevance of boundary con-
ditions on the microstructure formation in ferroelastics.

This shape can be understood as a consequence of the
interaction of the long-range elastic energy, which penal-
izes interfaces which are not aligned with the rank-one
direction, and an interfacial energy per unit length, which
penalizes long interfaces. To demonstrate the validity of
this interpretation, we formulate and study a simple one-
dimensional model for the shape of the domain wall.

The first term in our model represents the energy per
unit length of the domain wall. The precise value can be
determined by means of the one-dimensional interface pro-
file (9) for an unstressed domain wall, and is 2

3C44εβ
2 per

unit length.

Fig. 6. Absolute value of the order parameter on a sample with
two free surfaces at 45 degrees to the domain wall, with C11 = 2
(left), C11 = 10 (middle) and C11 = 20 (right), C12 = 1,
C44 = 1, γ = 0. Scale as in Figure 2.

The second term originates from the fact that a do-
main wall that does not follow the compatibility direction
is penalized by the elastic energy. This is best understood
in a coordinate system (ξ, η) aligned with the free sur-
face, and considering thin walls. Let the material occupy
the half-space η ≥ 0, and the domain wall be localized on
(η + h(η), η), where the reference location is (η, η). Then,
the region 0 < x < h(η) is in the ‘wrong’ phase, in the
sense that the order parameter is there 2β away from the
value that would minimize W . Since the largest contribu-
tion to e comes from uy,x, we attribute to this term the
entire difference 2β. In other words, an unstressed mate-
rial with the same phase distribution would have a jump
in uy of magnitude 2βh(η) at the domain wall. The ef-
fect of bending the domain wall is therefore analogue to
the presence of edge dislocations, with Burgers vector ey,
axis orthogonal to the plane, and density per unit length
2βh′(η) (along η). The elastic energy takes the form

Eelastic[h] � (2β)2
∫

h′(η)h′(η′)σ((η + h(η), η), r)

× Cσ((η′ + h(η′), η′), r)dηdη′dr (13)

where the integrals in η and η′ run over the domain wall,
the one in r over the sample, σ(r, r′) is the Green function
for edge dislocations in the half-plane, and C the matrix
of elastic constants. In an infinite sample σ(r, r′) would
decay as 1/|r − r′|, hence the integral in r would diverge,
leading to h′ = 0. In the presence of a free surface the
same decay holds only if |r − r′| is smaller than the dis-
tance from the free surface, due to a screening effect which
is analogous – with the usual caveats due to the vectorial
nature of elasticity – to the one known in electrostatics for
point charges close to a conducting plate [this would not
be true with Dirichlet boundary conditions]. We restrict
the integral to the unscreened contributions, and see that
almost-diagonal terms (in (η, η′)) dominate. The integral
of σCσ, done with σ = 1/|r− r′| in the region ε < |r − r′|
< η, is proportional to cC ln(1+ η/ε), where C is a repre-
sentative elastic constant and c a numerical factor (the
lower integration bound is given, as usual, by the size
of the dislocation core, which corresponds to the wall
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Fig. 7. Domain profiles as computed by the simplified model
of equation (14). The constant cC/C44 takes here values 1,
2, 3, 10 and 20 (from right to left). The dotted line gives the
position of the undistorted, straight interface. The dashed lines
give the position of the interface in the numerical computations
of Figure 6, defined as the line where e changes sign.

width ε). Combining both terms, we obtain

E[h] � cCβ2

∫
η [h′(η)]2 ln

η + ε

ε
dη

+
2
3
C44εβ

2

∫ √
1 + (1 + h′(η))2dη. (14)

Minimization in h results in a local Euler-Lagrange equa-
tion in h′(η). Simple expansions give the asymptotic be-
haviors h′(η) = −1 close to the free boundary, correspond-
ing to a domain wall orthogonal to the surface, and the
slow relaxation h′(η) ∼ −(y ln y)−1 to the bulk orientation
away from the surface. The resulting domain wall profiles
are plotted (after changing back to the original (x, y) co-
ordinates) in Figure 7.

We finally turn to different angles. Figure 8 shows rep-
resentative results for the cases of 30 and 60 degrees. These
are qualitatively similar to those reported for 45 degrees
in Figure 6, but show that the domain wall bending is a
more prominent feature for the smaller angles.

5.2 The case with surface relaxation

We now come to the interaction of domain wall relaxation
and surface energy, i.e., we include the term Ws in the en-
ergy. As in the case of walls orthogonal to the surface, far
from the domain wall the deformation can be determined
by a one-dimensional minimization. The following compu-
tation can be done for any angle, for simplicity we present
it only for the case of 45 degrees. Far from the domain wall
the affine solution is modified by a term which depends

Fig. 8. Profiles of domain walls intersecting the free surfaces
at 30 degrees (left) and at 60 degrees (right). The material
parameters are C11 = 5, C12 = 1, C44 = 1, γ = 0. The domain
wall bending is more pronounced for the smaller angle. Scale
as in Figure 2.

only on the distance from the free surface t = (x+ y)/
√

2.
Incorporating the scaling with ε, we write

u(x, y) =
(

(β + ω)y
−ωx

)
+ ε

β√
2

(
(v + w)(t/ε)
(v − w)(t/ε)

)
(15)

where v and w are two scalar functions to be determined
by minimizing the energy. The variational problem has
reduced to a one-dimensional problem in the variable t.
The three energy contributions take the form

β−2W =
C11 + C12 + 2C44

4
(v′)2 +

C44

2
(v′)3 +

C44

8
(v′)4

+ (C11 − C12)(w′)2 (16)

β−2Ws =
1
2
C44γ(1 + v′)2 (17)

β−2SP =
C44

2
[
(v′′)2 + (w′′)2

]
(18)

where SP denotes the singular perturbation 1
2C44|∆u|2,

and e = β(1+v′). Therefore w′ = 0 and, since global trans-
lations are irrelevant, we can set w = 0 and reduce to a
one-dimensional variational problem in the unknown v(t).
The corresponding Euler-Lagrange equation gives, after
multiplication with v′′ and integration, the equipartition
result

W (∇u) = SP + c, (19)

where c does not depend on t (this essentially follows from
the fact that the energy density W does not depend explic-
itly on t). Since both W and SP tend to zero as t → ∞,
c = 0 and we have W (∇u) = SP everywhere. Expanding
we obtain

C44

2
(v′′)2 =

C11 + C12 + 2C44

4
(v′)2 +

C44

2
(v′)3 +

C44

8
(v′)4

(20)
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Table 1. Numerical solutions of (23–24) for some values of the
elastic constants. Also reported is the squared order parameter
on the surface, e2

0 = β2(1 + v′(0))2. For γ = 0, the solution is
v = 0, independently on the other parameters.

C11 C12 C44 γ v′(0) e2
0/β2

- - - 0 0 1

3 1 1 1 –0.380 0.384

3 1 1 2 –0.557 0.196

3 1 1 4 –0.720 0.078

10 1 1 1 –0.286 0.510

10 1 1 2 –0.447 0.305

in the interior (i.e. for 0 < t < ∞). The boundary term
(t = 0) of the Euler-Lagrange equation gives

dWs

dv′(0)
− dSP

dv′′
(0) = 0 (21)

i.e.
C44γ(1 + v′(0)) − C44v

′′(0) = 0. (22)

Combining the two equations we get, for t = 0,

v′′ = γ(1 + v′) (23)

(v′′)2 = α(v′)2 + (v′)3 +
1
4
(v′)4 (24)

where
α =

C11 + C12 + 2C44

2C44
. (25)

This is a fourth-order polynomial equation in v′(0), which
can be easily solved numerically. Some solutions are given
in Table 1. The differential equation (20) can in turn be
solved numerically, using the values of v′(0) as initial con-
dition. This determines the entire one-dimensional pro-
file v(t), and hence u(x, y) from (15). We checked that the
full two-dimensional numerical solution obtained with fi-
nite elements starting with initial conditions which do not
contain a domain wall agrees, in the central part of the
sample, with this one-dimensional solution.

This one-dimensional profile is, however, not automat-
ically achieved by the two-dimensional computations close
to the upper-left and lower-right boundaries, since the nat-
ural boundary conditions we adopted correspond to free
boundaries. To reduce this spurious effect we modify the
boundary conditions on those two boundaries. Precisely,
we work in a rotated rectangle, and impose that on the
upper-left and lower-right boundaries u has the form

u(x, y) = cL(R) +
εβ√

2
v

(
x + y

ε
√

2

)
, (26)

for some vectors cL and cR. These vectors are also de-
termined by energy minimization, together with u. At
the same time, we impose that the same equality holds
for the gradients. In practice, this implies that in the
boundary term in (8) the contributions from the left and

Fig. 9. Absolute value of the order parameter on a sample
with two free surfaces at 45 degrees to the domain wall, with
C11 = 3, C12 = 1, C44 = 1. The lower-left surface has γ = 4,
the upper-right has γ = 0. The rectangle has size 31ε × 6ε.
Scale as in Figure 2.

right boundaries are computed using (26). Physically, this
means that we permit the boundaries to translate but not
to deform or to rotate. Therefore our modified boundary
conditions mimic an infinitely long strip, where only the
lower-left and upper-right boundaries are free.

Figure 9 shows that the presence of the Ws term makes
the wall broader close to the surface, and the bending ef-
fect less prominent. At the same time, the double-peak
structure which was present in the 90-degree case is sig-
nificantly modified. The results for the order parameter
on the surface are displayed in Figure 10. Without sur-
face relaxation (i.e. for γ = 0) the bending of the domain
wall generates a sharp peak on one side of the minimum.
With increasing surface relaxation this peak is broadened
out, and for large γ only an extremely broad peak survives,
which is barely distinguishable from finite-size effects com-
ing from the lateral boundary.

6 Concluding remarks

In summary, we have presented a new method, based on a
finite-element analysis with an adaptive hierarchical grid
of a nonlinear elastic model, for the numerical analysis
of complex elastic patterns in ferroelastics. We used it to
study the relaxation of domain walls in the vicinity of a
free boundary. We found that even in the simplest case,
i.e. domain walls orthogonal to the free surface and with-
out surface energy terms, some relaxation takes place, and
we have described it quantitatively. In the experimentally-
relevant case of walls at 45 degree to the surface, we have
studied the deformation of the domain wall, and in par-
ticular its bending towards the free surface, as a function
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Fig. 10. Squared order parameter on the free surface in units
of the asymptotic value, e2(x)/e2

0(γ), for γ = 0, 0.25, 1, 2
and 4 (from higher to lower curve in the central region). The
asymptotic value e0(γ) is given in equation (12). Here C11 = 3,
C12 = 1, C44 = 1.

of the elastic constants of the material. We also presented
a simple one-dimensional model which describes qualita-
tively the wall bending, and explains that it is determined
by the interplay of the long-range elastic energy and the
local energy-per-unit-length of the domain wall.
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